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Abstract

. Empirical Bayes estimators for the scale parameter in a Weibull,
" Raleigh or an exponential distribution with type II censored data are
developed. These estimators are derived by the matching moment
method, the maximum likelihood method and by modifying the
geometric mean estimators developed by Dey ‘and Kuo (1991). The
empirical Bayes risks for these estimators and the Bayes rules are
evaluated by extensive simulation. Often, the moment empirical Bayes.
estimator has the smallest empirical Bayes risk. The cases that the
modified geometric mean estimator has the smallest empirical Bayes
risk are also identified. We also obtain the risk comparisons for various
empirical Bayes estimators when one of the parameters in the
hyperprior is known.

Key Words: Type II censored data; Parametric empirical Bayes estimation;
ML-II prior; Matching moment method; Geometric mean estimator; EB risk
comparison.
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1. INTRODUCTION .

In, reliability analysis, we often conduct similar tests to assess the
reliability parameters. Empirical Bayes (EB) estimators may be.employed to .
reduce the risk by combining all the test data. There are usualiy several -
reasonable empirical Bayes estimators. As pointed out by Martz anci Waller
(1982, p. 633), it is an important. question which EB estimator has the smallest

EB risk (the expected Bayes risk of the EB rule). We report here some Monte

‘Carlo results that estimate the EB risks. These results will guide us in

determining which EB estimator is more desirable.
We assume that we are simultaneously testing p populations. For the ith
population, i =1, ..., p, we test n; devices until r; of them fail. The lifetime for

each. device tested in the ith population is assumed to be Weibull with known

- shape parameter p; and unknown scale parameter 4;,

tPi
f(thhiops) = ELePi7e B (11)
1

This model includes the exponential (p; = 1) and Raleigh (p; = 2) distributions.

Let t;=(t7 ..., t*'f.-) denote the ordered lifetimes of the r; devices that failed
in the ith population, where ti <.., < ty, Then §; =(n; —r,-)t,?,l!' +2;‘=1 t{]’-" is the
sufficient statistic for 4; with gamma distribution G(r;,4;).

In this paper, we consider a parametric empirical Bayes formulation. We
assume the parameters A; are independent and identically distributed with

the inverted gamma distribution IG(e, ). This conjugate prior is chosen to

facilitate a closed form expression for the Bayes estimator 4;. To obtain




empirical Bayes estimators, we are going to eStima;g oi_ and B from the
marginal density of S; given & and B. We then substitute these estimates &
apd‘ﬁ for the  and B in the Bayes rule. Usually, we can estimate ¢ and Bbya
moment method or by an ML-II method. The mdmgnt' method estimates a
and B by equating functions of & and B to the marginal mean and the \
marginal. variance respectively. The ML-II method obtains.the maximum
likelihood est@mates c;,f a a}nd B from the joint ,denéity of 51, S2, ..., Sp given a

and B, Recently, Dey and Kuo (1991) have obtained adifferent EB estimmator

* when a is known. This estimator éxpands the usual estimator by a m,ixltiple’

of the geometric mean of the component estimators. They show the

‘geometric mean estimator dominates the best multiple estimator (in

frequentists’ risk) for a wide class of p, &, and r, values. In thié,paper, we
propose a modified estimator called the hybrid ,geoimetric mean estimator
which estimates & by the moment method and estimates B as in Dey and Kuo.

We compare the EB l‘lSka of the three EB estxmators. moment' EB, ML-II
EB and hybnd geometric mea EB. The EB risks cainot be expressed in closed
form. We employ extensive Monte Carlo simulations to approximate these
EB risks. Our simulation results show that all the three EB estimators
perform well when compared to the Bayes estimator for 25, 25, r; > 5, for
alliand p 25.

If we fix the number of censored devices, say for example, r; = 2 for all i,
our recommendation depends on the different & and B values. A more
detailed discxissiqn is given in Section 3. In general, it is safe to recommend
the moment EB estimator. Unless we are in the situation with moderate a
and moderate f§ values (around @ = 5 and-§ = 3), where the hybrid geometric

mean estimator is recommended. Unfortunately, our recommendation




depends on the unknown « and.f'values. This should not deter us in using
the recommended estimators, since we do discuss various methods in
estimating o and B in this paper.

If the number of censored devices is moderate, say r; = 5 for all i, then we
would recommend using the moment EB estimators, for any values of o
and B.

We have also evaluated the EB risks for two other cases (1) @ known and
(2) p known. In case (1), we compare the EB risks among the Dey and Kuo
(D/K) estimators, the moment-EB and the ML-II EB estimators. All three
estimators have comparable risks independent of &, §,r;, and p. In case (2),
we compare the EB risks between the ML-II and the moment-EB estimators.
The ML-II EB is clearly a winner in almost all cases, except the cases where
both r; and « are small, say around r;=2 and a = 2.

Different classes of EB estimators are developed by Lemon and Krutchkoff
(1969) and Canavos and Tsokos (1971). Bennett and Martz (1973), Couture and
Martz (1972) consider nonparametric EB estimation of 1/4,. Martz and
Waller (1982) have also provided many relevant developments in this area.

In Section 2, we derive the various estimators for risk comparisons. In
Section 3, we discuss the Monte Carlo methods to approximate the EB risk

and the results.

2. EBESTIMATORS
By sufficiency considerations, observe that tke S; have independent
gamma distributions G(r, 4;). We assume that the 4;,i = 1, ..., p, have

independent inverse gamma distributions IG(a,f), i.e.,

1
1 ¥
a(d;) = ——————=¢ “¥, wherea>0,>0.
( ') I (a)ﬁakf‘” A




The posterior distribution of 4; given S; is IG(a+r;, ﬁ/‘:(S,-ﬂﬂ)), “Therefore, the
Bayes estimator for A; with respect to the squared efror loss

(L(). a)== (2-—a,-)2j is

i=1

83(1) = E(AilS;) = T (21)

o+ r, -1 Bla+n-1)
To construct EB estimators, we first obtain the marginal density of S;

Ma+r) sfi-1ph

m(Siles,B) = [ f(SifAi)m(A:)aA; = R g™

(22)

Therefore, we can find @, § which maximize the joint:density of the S{'s,

Fa+r si-lgn (2.3
Sla' IZI (Slp+1)a+r ' ( )

In Appendix 1, we show there is a unique root of
3 ) . . '
;;10gm(§|a,/3)= =-a?10gm(§|a,ﬂ). A sufficient condition based on the

second derivative test is given to verify that the urique root &,p yields the
maximum likelihood estimates of (2.3).

In addition to the ML-II method we can also estimate & and f by the
moment method. We will assume r; =r for all i. Using the two equations in
Berger (1985, p. 101) which relate the marginal mean and the marginal

variance to expectations from the model, we have

2
Y 1 - r _ 2_ r = r 1+r
P = E*(rA) = ,and 02, =E (M ﬁ(a_l)) Bz(a—l)z(Ha )(24)

Define f,, = Z5;/ p, 6% = 2(S; - ﬁm)2 /(p—1). We can solve ¢ and B from (2.4)

using fi,,, 62 o substitute for 4, and 0. We have




(r-1)iZ +2ré}

Gy =Max{——5"—=
{ ra,z,,-u,,_,

Bring = —_t
1_2}1 a-nd ﬁMM - max{(&_l)#

}. (2.5)

The truncated version is obtained because without the condition @ > 2 we

L4

do not have finite variance in the prior distribution. Moreover,. § must be

'positive. The same truncation methods are also applied to other EB

estimators.

Next we will discuss how to obtain the hybrid geometric mean EB
estimator. In Dey and Kuo (1991), they show

1
P ol 1
E{ VISP (==
15 =5

|-

¥

i=1

_rta) | gl _ra)_
)

(2:6)

The Dey and Kuo EB geometric mean estimator is obtained from (2.1) with i

estimated from (2.6) and known a. However, the assumption of known «a is

too restrictive in practice. In this paper, we propose to estimate a by a

moment condition. Observe from (2.4),

Therefore, we can solve for « from (2.7) using fi,, and &,2,, for y,, and 0',-2,‘,

SfFo

ra-2)
o—~1+r

(27)




@ratio = MM - (2.8)
The hybrid geometric mean EB estimator is obtained from (2.1) using (2.6) and
(2.8) to estimate a and S. -
We have considered the EB estimators for « and f unknown. We can
also develop EB estimators when « is known. In.this.case, we will consider
the following EB estimators: (1)-the moment EB, where

e max{(———rﬁ,O}; | . (2.9)‘

a-1)1

(2) the ML-II EB, where B is estirpatéd by maximizing (2.3) as a function § for:
the given known o; and (3) xthe Dey and Kuo (D/K) EB, where B is estimated
from (2.6).‘

For the other c;se B known, we estimate a by (1) the moment

consideration
a= max{l + (ﬁmﬁ)—lr, 2} (2.10)

and (2) the maximum likelihood estimate of ¢ from (2.3), i.e., the root of
equation (A.2) in the appendix.
We report the EB risk evaluations of these EB estimators in the next

section.

3. EBRISKS

Recall the loss function is defined by

L0,3)=1 8 (h-a)

i=1




The Bayes risk of a decision rule §(S) = (51 (s),,,,,gp (S)) is defined by

r(%,8(8)) = [ [L(X,8(S))f(SIA)asdx(n).

The EB risk of §(S) is the expected Bayes risk, where the expectation is taken

over all the samples.
EBrisk = Er(x,5(S)). (3.1)

The EB risk is approximated by the Monte Carlo method. In each
iteration, we generate 4;,i =1, ..., p from an IG(¢,f) distribution with «,f fixed.
Given the /’L,-’s; we generate Xj, £=1, ..., 10 from the exponential distribution

Exp(4). The random variable t;, = X}z/ P is distributed as (1.1). We order the

variables # < t < .., < tir, and compute §; = (10~r)tf, +z:=1ti’;. (Note: we

assume r; =r and p; = p for all i.) We compute the Bayes rule &g as in (2.1).
We also compute each of the EB rules as in Section 2. Then we repeat these
steps for 10,000 iterations. The EB risk is approximated by

10,000 p

A _ 1 -1 o (s 2
EB I‘lSk-——-——lO’OOO )gl L:le (11] 5EB,](1)) ’

where 4; is the parameter for the ith population simulated in the jth iteration,
and O i(i) is the EB estimator for the ith population in the jth iteration.

Figure 1 plots the EB risk of the Bayes estimator (2.1), the ML-II EB (from
(A.2) and (A.3)), the moment EB (from (2.5)) and the hybrid geometric mean
EB (from (2.6 and 2.8)) for five populations with r = 2, 5 and 10. It is expected

as r increases, the EB risk decreases because more information on the
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lifetimes is collected. Moreover, the differences of the EB risks of the three
estimators and the Bayes rule also decrease. We observe that the Bayes. rule
has the smallest risk.

If we fix the number of censored devices, say for example, r; = 2 for all i,

our recommendation depends on the different & and B values. Case (1): ais

" small, say around 2. The hybrid geometric mean is the best. It is a bit better

than the moment EB. Both outperform the ML-II EB by a substantial amount.
Case (2): « is large, say around 10, the moment EB is best. It improves upon
the ML-II EB by a small amount. Both dominate the hybrid geometric mean
estimator by a substantial amount. Both cases 1 and 2 are somewhat
insensitivé to the B values. Case (3): @ is moderate, say around 5. Then the
performances depend on the § values. V/hen B is small around 1, then the
moment EB improves the other two by a substantial amount. When S is
moderate around 3, then the hybrid geometric mean estimator improves
upon the other two estimators by a substantial amount. In summary, it is safe
to use the moment EB estimators unless we are in the situation of moderate
o and f values (around @ =5 and 8 = 3).

Next consider the case that number of censored devices is moderate, say r;
5 for all ii The moment EB consistently performs well among the three
estimators independent of the values of a and f.

Figure 2 plots the EB risks of the four estimators for various r values
when « is known. The four estimators are the Bayes, moment, ML-II and the

one developed in Dey and Kuo (1991). The latter three estimators are

. computed from (2.1) with § estimated by (2.9), (A.3) and (2.6), respectively.
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Figure 2. EB risks of the four estimators are plotted versus r for
configurations when « is known.




Only the configurations with « =5and f=1, 3 are plotted here. All the other
configurations show similar behavior, therefore are omitted. All the results
show that the Dey and Kuo estimator dominates the moment and ML-II
estimators, sometimes by a very small amount.

Figure 3 compares the EB risks of the three estimators for various r
values, where B is known. The three estimators are the Bayes estimators, the
moment, and the ML-II estimators. The parameters a in the two latter

estimators are computed from (2.10) and (A.2), respectively. Our simulation

* ' results show that the ML-II EB dominates the Moment EB usually. The

improvement of the ML-II EB over the Moment EB could be substantial in
many cases. The exception occurs when both r and « are small, where the
moment EB improves upon the ML-II EB by a small amount. Only two cases
with @ =5and =1, 3 are presented here for short.

All the figures are produced by the GPLOT procedure of the SAS
(Statistical Analysis System).

11
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*APPENDIX. ML-II PRIOR APPROACH TO EB ESTIMATION

In this appendix, we derive the maximum likelihood estimates of a and 8
from the joint density of the S{'s given in (2.3).
To maximize (2.3), we can equivalently maximize the following

logarithmic function of (2.3)
p
fla,B) = 2 {lnI‘(a-i-r,-)-‘lnF(a)-l-r,-lnﬂ —(e+7)In(S;B+ 1)+g(r,-,S,')}, (A1)
i=1
where g does not depend on ¢, .

We first obtain the first derivatives of f and set them to 0:

_é%f(a,p)=i{!}’(a+;;)- ¥(a)-In(S;8+1)}=0and (A.2)
i=1
J L (a+n)s
28 (@, 8)= Elﬁ"m =0, (A.3)

where ¥(a =iln1"a and Y(a+r, =—i-lnl‘ a+r)
do " da

A computer program using the bisection method has been written to
search for the roots of (A.2) and (A.3).

Next we will verify (by the second derivative test) whether the root (@,8)
is a local maximum of f. Let us first evaluate the second derivatives. Using
the recur.rence formula for ¥(a+r;) as in Abramowitz and Stegun (1964, p.
258),

Y(a+r)= ! PO S +l+‘}’(a),
r-l+a r-2+a l+a «

we have

13




EAPRE J R S W1 P
dar? prd (r;—l+oz)2 (r;-z-wz)2 " a? o
P S;
sap P)="& gy 2
* . y , (@+n)sf
— f 'ﬁ)l A=t
op (@) S| 8 (si8+1)
P A+1:)S; )52
=3 _(af’i)si+(a'i"i)sx (using A.3)
1| (sA+1)p (s:8+1)
p Y +71:)S:
=2 “.(a_tmiko. (4.5)
=1 f(sp+1)
% . a
Let Ewl f(&,ﬂ) denote the 2nd partial derivative with respect to a evalu-
o S

ated at (&,,5‘). Similar notations are defined for other derivati\}es. The second

derivative test states that if —a—zi-f(&,[i) < 0 and
2 2 2 2 %
D=£Ff(&,ﬁ)—é%5f(&,ﬁ)-{-a—z—a-ﬁ (&,ﬁ):l >0, then (&,/3) is a local

maximum of f(a,B). Since -5—2 f(&,ﬁ) <0, we need only program the second
o

condition and verify it. That is, we need to show
2
P K P (g+r)s: | [2 : .
D=1y Y — 1 b ZA(OC .rl)Slz _{z ——‘g’-——} >0, where (&,B) is
=1 (@ +n =) ) iaf(sFer)| st SPT
the solution to (A.2) and (A.3).

14



We have discussed how to obtain. the maximum likelihood estimates of
(A.1) when both & and 8 are unknown. For the case that § is known, we
maximize f(e;B) by solving (A.2) as a function of @. There is a unique root of
(A.2) which maximizes f(a,8) because f(e,B) is a concave function of o as
.~.shown in (A4). For the other case that a is known, we solve (A.3) as a

function of . This root maximizes (A.1) because of the condition in (A.5).
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